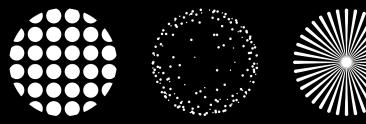
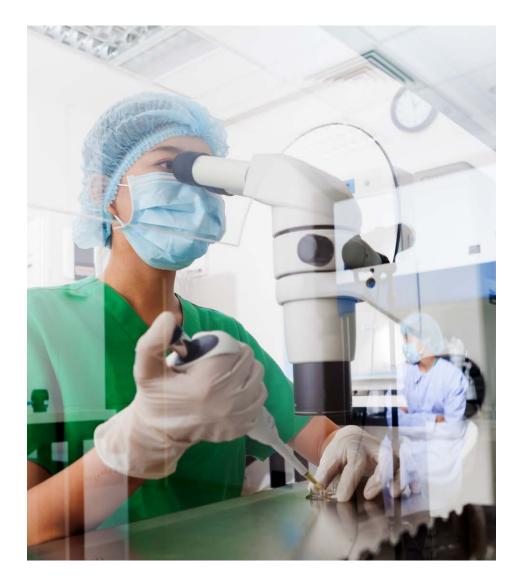

COVID-19 Conversations

Richard J. Hatchett

Chief Executive Officer, Coalition for Epidemic Preparedness Innovations (CEPI)

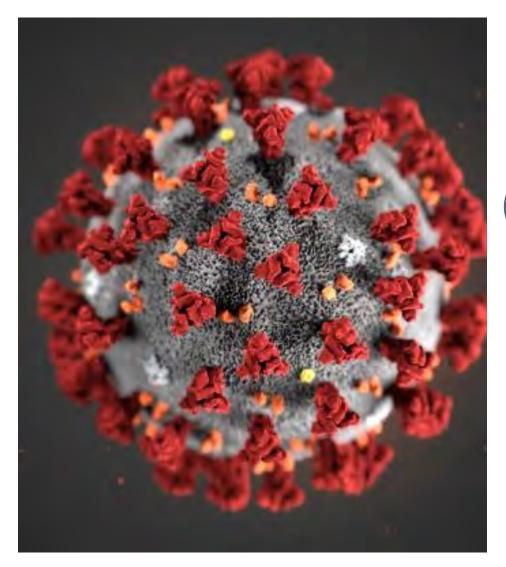
COVID19Conversations.org #COVID19Conversations





The Road to Immunity During CLF COVID-19: Developing & Distributing a Vaccine

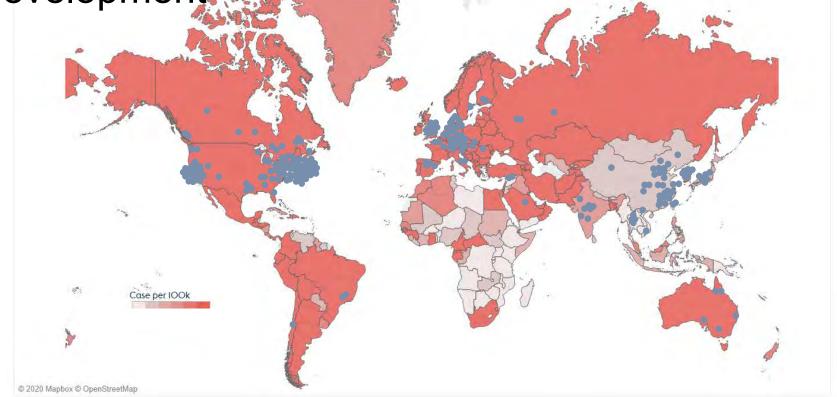
NAM-APHA COVID-19 Conversations Webinar 10 June 2020

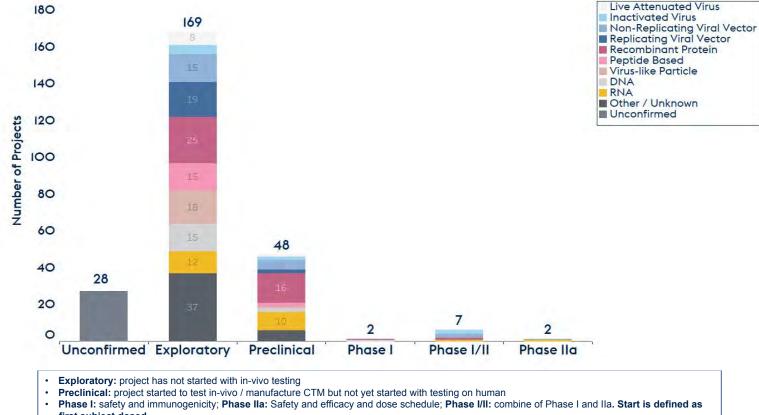

Richard Hatchett CEO, CEPI

Our mission

CEPI accelerates development of vaccines against emerging infectious diseases and enables equitable access to these vaccines for affected populations during outbreaks

Disease X: COVID–19


As of 9 June


The spread of COVID-19 has become a humanitarian and economic crisis, unprecedented in modern times.

Date: 03 June 2020

Global Snapshot of COVID-19 Vaccine Development

Date: 03 June 2020

Covid-19 vaccine R&D landscape

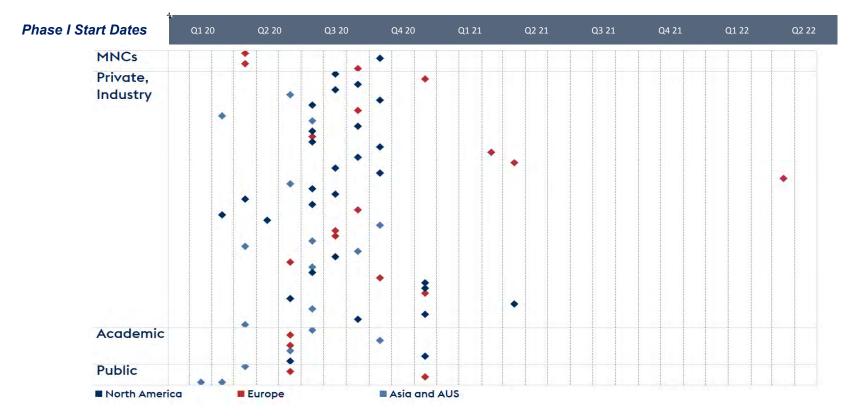
first subject dosed

· Unconfirmed: the development status cannot be confirmed using available internal and publicly available information

Current CEPI COVID-19 vaccine portfolio consists of 9 projects

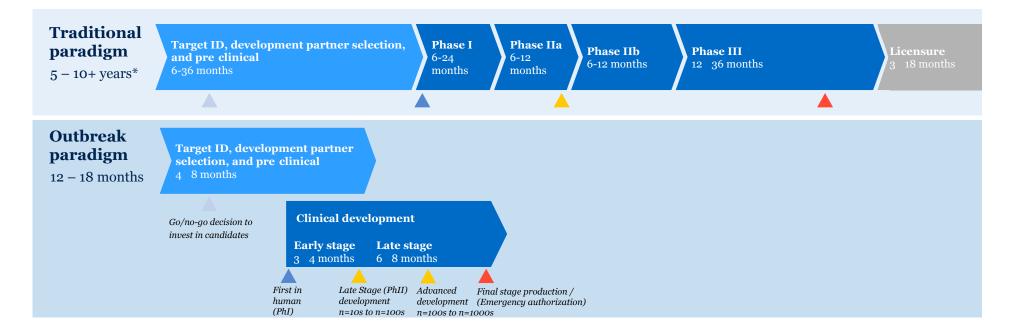
CC WAR									
	Inovio	University of Queensland / CSL	CureVac	Moderna	Clover BioPharma	Merck / Themis	Novavax	University of Hong Kong	AZ / Univ. Oxford
Location	USA	Australia	Germany	USA	China	USA/Austria	USA	China	UK
Platform	DNA	Protein	RNA	mRNA	Protein	Viral Vector	Protein	Viral Vector	Viral Vector
Antigen / Adjuvant	Full-length S protein	Full-length S protein / MF59 or AS03 or CPG1018	Full-length S protein	Full-length S protein	Full-length S protein / AS03 or CPG1018	Full-length S protein	Full-length S protein / saponin- based Matrix-M	Receptor Binding Domain / AS03	Full-length S protein
Current phase	Phase 1	Preclinical	Preclinical	Phase I1a	Preclinical	Preclinical	Phase I	Preclinical	Phase I/II

1



11 Covid-19 vaccine candidates in clinical trials

Candidate	Vaccine characteristics	Current stage	#Sites/Location	Lead Partner
Ad5-nCoV	Adenovirus type 5 vector that expresses S protein	Phase IIa	? sites / China	Cansino
		(<u>NCT04341389</u>)		
SARS-CoV-2	Inactivated Novel Coronavirus Pneumonia vaccine (Vero cells)	Phase I/II	? sites / China	Wuhan Institute of biological
inactivated		(ChiCTR2000031809)		products
SARS-CoV-2	Inactivated novel coronavirus (2019-CoV) vaccine (Vero cells)	Phase I/II	1 site / China	Beijing Institute of
inactivated		(ChiCTR2000032459)		Biotechnology
Inactivated	SARS-CoV-2 inactivated vaccine	Phase I/II	1 site / China	Sinovac Biotech
Virus		(<u>NCT04352608</u>)		
ChAdOx1	ChAdOx1 vector that expresses S protein	Phase I/II	6 sites / UK	AZ / Oxford
nCoV-19		(<u>NCT04324606</u>)		
LV-SMENP-DC	DCs modified with lentiviral vector expressing synthetic minigene based	Phase I/II	3 sites / China	Shenzhen GIMI
	on domains of selected viral proteins; administered with antigen-specific	(<u>NCT04276896</u>)		
	CTLs			
mRNA-BNT162	mRNA NRM / SAM constructs with LNP	Phase I/II	1 site / Germany	Pfizer; BioNTech
		(<u>NCT04368728</u>)	7 sites / US	
NVX-CoV2373	stable, prefusion protein, includes Matrix-M™ adjuvant	Phase I/II	2 sites / Australia	Novavax
		(<u>NCT04368988</u>)		
Pathogen-	aAPCs modified with lentiviral vector expressing synthetic minigene based	Phase I	1 site / China	Shenzhen GIMI
specific aAPC	on domains of selected viral proteins	(<u>NCT04299724</u>)		
mRNA-1273	LNP-encapsulated mRNA vaccine encoding S protein	Phase IIa	10 sites / USA	Moderna Therapeutics
		(NCT04283461)		
INO-4800	DNA plasmid encoding S protein delivered by electroporation	Phase I	2 sites / USA	Inovio Pharmaceuticals
		(NCT04336410)		


Clinical development is proceeding at unprecedented speed

Cov can to e		vid-19 cine ates in ical		Several developers targets for doses from late 2020	to be available		
0_ Q1 20	Q2 20	Q3 20	Q4 20	Q1 21	Q2 21	Q3 21	Q4 21
16 March 2020 – Covid-19 vacci candidate enters P (Moderna mRNA-		•	ompared witl Ebola – 5 yea Pandemic In HBV – 16 yea	ars fluenza – 7 y	/ears		

>60 vaccines will enter clinical development by the end of 2020

Speed requires a paradigm shift

*Source: Pronker ES, Weenen TC, Commandeur H, Claassen EHJHM, Osterhaus ADME (2013) Risk in Vaccine Research and Development Quantified. PLOS ONE 8(3): e57755. https://doi.org/10.1371/journal.pone.0057755 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0057755

COVID-19 vaccines are being developed on many platforms

Technology platform	Advantages	Disadvantages
Attenuated / inactivated	Relative ease of development; if replicating, may lead to longer lasting response	If non-replicating, requires more frequent boost than live vaccine; generally requires BSL3 / BSL4 manufacturing capability
Viral vector	High antibody and T-cell response; ability to select optimal antigen; possible for single-dose protection; replicating virus can use a lower dose; higher productivity in manufacturing; reproducible for different pathogens	Relatively long development time to make master virus/release production starting materials; may not be appropriate for immune-compromised patients; may elicit immune response against vector rather than antigen; stability may require low temperature storage or lyophilization
Recombinant protein / subunit	Ability to select optimal antigen; existing manufacturing capacity / productive platforms / many licensed products with the technology; allows for relatively easy dose optimization	Generally require adjuvant; often process development needed for new targets (platforms that don't change are being developed)
Virus-like particles	Safe; ability to select optimal antigen; can display antigens from multiple strains; more immunogenic than soluble protein	Likely to require adjuvant
DNA	Scalable manufacturing process for bulk drug; fast response time to new disease target; flexible for a variety of disease targets (bacterial, viral)	Requires a device that is currently limited in supply and high in cost for LMIC
RNA	Potential fast response to new disease target; flexible for a variety of disease targets (bacterial, viral);	Delivery requires specialist delivery systems (e.g. LNPs); new technology, so capacity needs to be created (limited existing production capabilities); stability may require low temperature storage or lyophilisation

Concluding thoughts and open questions

- There is no scenario in which vaccines will not be in short supply in 2021
 - The careful management of COVID-19 vaccines as a scarce resource will be essential if we are to end the acute phase of the pandemic and achieve equitable access.
- Many of the Covid-19 vaccine development approaches are high-risk
- Many questions are likely to remain and require longer term follow up, e.g.:
 - o Long-term effectiveness / durability of response
 - Long-term safety follow-up
 - Potential for differential responses due to population heterogeneity
 - o Breadth of protection against virus mutation or genetic drift / shift
- The first vaccines to market may not be optimal and it will be important to maintain a comprehensive strategic approach for the long term built on an evolving understanding of disease epidemiology and vaccine effectiveness